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Introduction 
The ability to express ideas in a computationally meaningful way is becoming an increasingly 
important skill (National Research Council, 2010, 2011; Papert, 1980, 1993; Wilensky, 2001; Wing, 
2006). diSessa (2000) argues that being able to express ideas in a computationally meaningful way 
can serve as the foundation of a powerful new literacy that will have widespread positive effects on 
society. Central to this new literacy is the ability to read, share, and express ideas in a form that a 
computational device can interpret and execute. Traditionally, these practices have been confined to 
the domain of computer science, but this view is being challenged by researchers and educators who 
argue that computational literacy skills are beneficial in a wide range of disciplines (Guzdial & 
Soloway, 2003; Wing, 2006). Part of the challenge of introducing learners to the skills foundational for 
computational literacy is designing learning environments that support the act of computational 
expression in a way that enables them to have early successes in a meaningful context. This paper 
presents the program-to-play approach, a design strategy for creating game-based learning 
environments designed to support novices in expressing ideas in a computationally meaningful way. 
Using RoboBuilder (Weintrop & Wilensky, 2012), we introduce the program-to-play paradigm and 
present data showing how this design approach scaffolds learners in developing computational 
literacy skills.  

Prior Work 
In response to the growing recognition that students can benefit from learning to express ideas in 
computationally meaningful ways, educational researchers have been developing “low-threshold” 
programming languages that are easier to learn but still permit significant expressivity. Beginning with 
Papert and colleagues’ Constructionist Logo project (Feurzeig et al., 1970; Papert, 1980), there have 
been many efforts to bring learning environments for supporting computational expression to a wide 
audience of learners. diSessa (2000), in formulating his conception of computational literacy, used 
Boxer as one example of what form such tools might take. Boxer uses a graphical interface based on 
the naïve realism theory of mind to create a “glass-box” programming environment where “users 
should be able to pretend that what they see on the screen is their computational world in its entirety” 
(diSessa & Abelson, 1986, p. 861). A second notable line of work stems from Wilensky and 
colleagues who have responded to this design challenge by creating low-threshold, programming 
environments that focus on students building computational models of emergent phenomena (Wagh 
& Wilensky, 2012; Wilensky & Reisman, 2006; Wilensky, 1999, 2001; Wilkerson-Jerde & Wilensky, 
2010). A third approach to low-threshold programming environments utilizes a graphical, grid-based 
model in which learners define states and transitions that enable the creation of games and 
simulations in two and three dimensional worlds (Ioannidou, Repenning, & Webb, 2009; Repenning, 
Ioannidou, & Zola, 2000). Yet another approach taken by Resnick and colleagues (Resnick et al., 
2009) employs a blocks-based programming language, that leverages a blocks-as-puzzle-pieces 
metaphor, to enable young children to express themselves through creating games and stories.  
 
A second active area of research studying the affordances of technology for creating learning 
environments is the growing literature on video games as a medium for learning (Barab et al., 2005; 
Gee, 2003; Holbert & Wilensky, 2014; Shaffer et al., 2005; Squire, 2003). This work looks at the 
potential use of games in both formal (Clark et al., 2011) and informal settings (Stevens, Satwicz, & 
McCarthy, 2007), and has created a great deal of excitement due to the increasingly ubiquity of video 
games in youth culture (Lenhart et al., 2008). While games have been designed to teach a diverse 
range of content areas, computer science educators have been particularly active in the use of video 
games as learning contexts as there is a natural match between the computational context of a video 
game and computer science content (Barnes et al., 2007; Bayliss & Strout, 2006; Li & Watson, 2011).  
 
Our own work has focused on the goal of designing learning environments that make the skills 
associated with computational literacy more accessible and appealing to a broad range of learners. 
Towards this end we have developed the program-to-play design strategy that situates the practice of 
expressing ideas in a computationally meaningful way in a game-based learning environment where 



learners compose small programs in order to play a game. While a similar approach has been used in 
the educational game space, such as the IPRO learning environment (Berland, Martin, & Benton, 
2010) and PlayLOGO 3D (Paliokas, Arapidis, & Mpimpitsos, 2011), this paper seeks to formalize the 
design strategy, provide theoretical justification, and present evidence towards its effectiveness for 
teaching skills associated with computational literacy. 

The Program-to-Play Approach 
The central activity of program-to-play games is players defining instructions for their in-game 
characters to follow through a programming, or programming-like, interface. This is in contrast to a 
conventional video game interaction where players control their on-screen avatars directly as the 
game unfolds. The challenge that underpins all program-to-play games is for players to conceive of a 
strategy for their character and then figure out how to encode that idea using the tools provided by the 
game’s programming interface. Players’ learning how to express their own ideas and intentions in a 
way that the computer can interpret and execute is a key component of computational literacy. In 
looking at the use of video games as a context for computational expression, it is important to 
distinguish the program-to-play approach from tools designed for game authorship (Jones, 2000; 
Kafai, 1994). While learning environments that have students design and build games have been 
found to be a successful and motivating way to introduce learners to programming, the program-to-
play model we present herein has additional, desirable features that build on the strengths of the 
game authorship approach. These strengths stem from the parallels that exist between the act of 
playing video games and the practice of programming. 
 
For example, when playing a video game, players do not expect to be successful on their initial 
attempt, instead, game norms dictate that players will need multiple tries to accomplish an in-game 
challenge; trying different approach, refining strategies, and learning from prior mistakes along the 
way. In this way, games are low-stakes environments where failure is a part of success (Squire, 2005). 
Programming shares this feature as programs rarely work correctly on the first try. Instead, writing 
working programs requires many attempts. Trying different approaches to see what works and 
learning from prior mistakes without getting frustrated at a lack of immediate success are critical in the 
practice of programming. By aligning the construction of programs with the act of gameplay, players 
are situated in a context where early failures are expected and provide valuable learning experiences. 
 
A second productive parallel between gameplay and programming that the program-to-play approach 
leverages is the iterative, incremental nature of both activities. When playing a game, players often 
attempt the same challenge a number of times, then, upon completing that task, proceed to the next, 
having gained experience and knowledge along the way. Programming shares this feature, as the 
completion of one component of a program leads to immediately working on the next, but with gained 
experience and new functionality to show for it. Additionally, the iterative, incremental characteristic of 
program-to-play games provides a natural, unobtrusive way for the game designer to scaffold players 
in moving from simple to more sophisticated programs that utilize more complex constructs. As 
players progress in a program-to-play game, the challenges become more difficult, thus, players need 
to respond by creating more sophisticated programs. This characteristic is unique to this design 
approach. In a game authoring learning environment there is no motivation provided by the tool itself 
to use advanced language features or create larger, more sophisticated challenges. Similarly, other 
open-ended, exploratory programming environments such as Scratch or Alice do not natively have a 
way to encourage more sophisticated constructions. In program-to-play environments on the other 
hand, as players progress, the game creator can design challenges that encourage and reward 
players for using more advanced programming constructs and creating more sophisticated programs. 
In RoboBuilder, this takes the form of opponents that demonstrate progressively more sophisticated 
concepts using a strategy we call “Learning from Your Opponent” (Weintrop & Wilensky, 2013a).  

Meet RoboBuilder – A Program-to-Play Game 
RoboBuilder (Figure 1) is a blocks-based, program-to-play game that challenges players to design 
and implement strategies to make their on-screen robot defeat a series of progressively more 
challenging opponents. A player’s on-screen robot takes the form of a small tank, which competes in 
one-on-one battles against opponent robots. The objective of the game is for players to defeat their 
opponents by giving their robot instructions to locate and fire at their opponent while avoiding 
incoming fire; the first robot to make its opponent lose all its energy wins.  
 



To facilitate this interaction, RoboBuilder has two distinct components: a programming environment 
(right pane of Figure 1), where players define and implement their robot’s strategy; and an animated 
robot battleground (left pane in Figure 1), where players watch their robot compete. Players first 
interact with the programming interface to define their robot’s behaviors before hitting the ‘Go!’ button, 

    
 

Figure 1: RoboBuilder's two screens: the battle screen (left) and the construction space (right). 
 
which launches the battleground screen. To program their robot, players are provided with a custom 
deigned graphical programming language in which color-coded blocks encapsulate basic robot 
actions, such as turn right and fire!, that snap together to form robot strategies. Players are 
made aware that all of the opponents in the game were created using the same set of blocks that they 
are given; thus, it is always possible to recreate the strategy of an enemy robot. Once the battle starts, 
the player cannot interact with or alter their robot. RoboBuilder was designed for learners with little or 
no prior programming experience and has been played by a wide range of users including university 
graduate students and by students as young as ten as part of an afterschool program. 
 
RoboBuilder is a combination of two open source projects: Robocode and OpenBlocks. Robocode 
(Nelson, 2001) is a problem-based learning environment initially designed to teach students how to 
program in Java. It has been used in introductory programming classes, where it has been found to 
be effective and motivating for students (O’Kelly & Gibson, 2006). RoboBuilder’s programming 
interface is a modified version of the OpenBlocks framework (Roque, 2007), an open source Java 
library used to create graphical, blocks-based programming environments.  

Methods 
The data we present is from a study designed to explore how players interact with program-to-play 
games and to identify which features of the environment where utilized to succeed in the game.  

Procedure 
Our primary data collection activity was an hour-long, one-on-one interview during which a researcher 
sat alongside the participant as he or she played the game. At the outset of the interview participants 
were told that they would be playing a video game. They were then shown a pre-recorded robot battle 
to introduce them to the central challenge of the game. The interviewer then further described the 
objective of the game and explained the program-to-play method of gameplay. They were then 
introduced to the construction space including a high-level description of RoboBuilder’s programming 
language, and shown how the blocks could be assembled to create a robot strategy. This first portion 
of the interview usually took around ten minutes, leaving roughly 50 minutes for gameplay. 
 
Gameplay during the RoboBuilder interview followed a three-phase iterative protocol. In the first 
phase, participants were asked to verbally explain their intentions; either how they intended on 
defeating their opponent, or what changes they planned on making to their current strategy. Next, 
players were given the opportunity to implement their strategy using the provided programming 
language primitives. Once they were satisfied with the program they had created (or with the set of 
changes they had made), they launch the battle screen, which begins the third phase of the iterative 
protocol. During this final phase, players would watch the battle and explain what they observed, 
paying particular attention to whether or not their robot was behaving as expected. Players had the 
ability to end the battle at any point. After the battle screen was closed, the next iteration would begin 
with players again verbally explaining their goals for their robot strategy. Each RoboBuilder session 



was recorded using both screen-capture and video-capture software. We also stored a digital copy of 
each robot strategy constructed during the RoboBuilder interview for further analysis. 

Participants 
Our main criterion for recruiting participants was that they be comfortable using computers but have 
little or no prior programming experience. Seven university-aged participants (3 female, 4 male) were 
recruited from a Midwestern university. Eight high school aged participants (1 female, 7 male) were 
recruited through relationships with members of the university community or through their affiliation 
with a community center in a Midwestern city that serves a predominantly African-American, low SES 
community. Participants played for an average of 48 minutes and 43 seconds (SD 8 minutes 39 
seconds) and constructed an average of 11.5 unique robot strategies (SD 4.9). Each participant took 
part in one RoboBuilder session with the exception of one participant who agreed to four RoboBuilder 
sessions, each held a week apart. This resulted in a total of over 200 robot strategies being 
constructed and roughly 19 hours of RoboBuilder footage.  

Playing a Program-to-Play Game 
We begin this section by presenting a vignette of gameplay to provide a sense of the dynamics of 
playing a program-to-play game, before providing data showing how the full set of participants 
progressed over the course of their gameplay experiences. We start by looking at the first iterations of 
one interview to show what it looks like to conceive, then computationally express, a RoboBuilder 
strategy. After being introduced to RoboBuilder, this participant was asked how he was going to 
defeat his first opponent. He talked through a few ideas, then finally summed up his strategy this way: 
 

So my master plan is to, like, be continuously moving, so it's harder to hit. If I get hit, kind of 
change the path so it's different than what you might be expecting however the sequence is 
running, and then, during that path, adjust to what the opponent is doing to hit them. 

 
He then brings up the composition screen (Figure 1, right side) and starts implementing his idea. Over 
the course of six minutes, he builds up his strategy, shown in Figure 2, beginning with the Run action 
then adding four more actions, defining and implementing the behavior for each as he goes. 
 

 
 

Figure 2. A participant’s first robot strategy. 
 
In this composition we can see aspects of his “master plan” reified, as well as additional components 
he added as he implemented his strategy. In the quote above, the participant articulated three distinct 
ideas, each of which are included in his program. The first verbalized strategy: “be continuously 
moving, so it's harder to hit” was implemented in the Run method of his program (left side of Figure 2). 
This series of instructions will result in his robot remaining in constant motion. His second tactic: “if I 
get hit, kind of change the path so it's different”, can be found encoded in his When I get Hit 
event block. The two commands that will execute when his robot gets hit will cause the robot to 
change its heading and move forward out of the current line of fire. His final idea: “adjust to what the 
opponent is doing to hit them” is captured by his implementation of When I See a robot (bottom 
right of Figure 2), which will result in his robot’s gun adjusting to the location of his opponent and firing 
at it whenever his robot spots its opponent. The participant also added two additional behaviors to his 
strategy: to backup and turn when he hits a wall, and to first after his robot successfully hits the 
opponent. These two strategy improvisations emerged based on the suggestive, idea-generating 



capacity of the language that was frequently employed by players as they developed their strategies 
(Weintrop & Wilensky, 2013b). In subsequent iterations, this participant incrementally added new 
behaviors to his robot strategy. The practice this vignette highlights, that of computationally realizing 
an idea, is central to computational literacy and a key dynamic in program-to-play games. 
Of the 15 programming novices who played RoboBuilder, 14 were able to successfully compose a 
strategy to defeat the first opponent with 9 participants advancing past level 3. While the size and 
complexity of players’ constructions varied, programs generally got larger and more sophisticated as 
players progressed. Because of the iterative nature of program-to-play games, players’ progressions 
are visible in the sequence of programs they construct. Beth, a vocal performance major with no prior 
programming experience, was the participant who agreed to four RoboBuilder sessions, resulting in a 
total of 46 distinct programs that we can use to map out her trajectory. As Beth progressed through 
the game, the size and complexity of her programs grew (as can be seen by the number and variety 
of commands). Figure 3 shows her winning robot strategies for levels 1, 2, and 4 (moving left to right). 
 

       
 

Figure 3. Three of Beth’s Robots, progressing from earliest (left) to latest (right). 
 
As she progressed, her robots grew larger (used more blocks), more complex (implemented more 
events), and more sophisticated (used a larger variety of blocks). Figure 4 depicts the trajectory of her 
programs over the course of her entire four hours of gameplay. Each line depicts the frequency of 
different types of blocks being included in her program, with the top line being the total. 
 

 
 

Figure 4. The blocks in Beth’s robot constructions over the course of her gameplay. 
 
Looking across the full set of participant, we can see how Beth’s trajectory was typical as most 
participants progressed from small, simple programs to larger, more complex robot strategies. On 
average, each participant added 1.6 blocks to their strategy for each level they advanced. If we only 
consider the cases where participants revised their robot strategies between successful battles, the 
number of blocks added per level increases to 3.3 blocks for each new successful robot construction. 
Only two players’ robot constructions got smaller as they progressed through the game; a third 
player’s strategy remained at a fixed size; the remaining players’ constructions grew as they 
progressed in the game. Figure 5 shows the trend lines for the size of each participant’s robot 
construction over the course of their RoboBuilder sessions.  By evaluating the novices’ success in 



expressing ideas within the medium provided, we can see how the program-to-play design approach 
resulted in players not only creating successful programs, but over the course of a single hour of 
gameplay, moving from small, simple constructions to larger more sophisticated programs. 
 

 
 

Figure 5. The trend lines of the changing size of players’ constructions (projected forward). 

Conclusion 
The ability to express ideas in a computationally meaningful way is quickly becoming a core literacy 
one needs to succeed in our increasingly computational society. In this paper we introduced the 
program-to-play design strategy; an approach to creating game-based learning environments to teach 
fundamental computational literacy skills. This approach draws on video game norms that parallel 
programming practices and are productive when trying to express ideas in a computationally 
meaningful way. Using RoboBuilder, a program-to-play environment of our own design, we provided 
evidence for the potential of this approach. Novice programmers using RoboBuilder were able to 
create successful, sophisticated working programs in a short amount of time with minimal instruction. 
Our hope is that program-to-play games can serve as effective tools that fit within youth culture and 
can be meaningfully used to give young learners the experience of expressing their ideas in 
computational meaningful ways, helping us move towards a computationally literate society. 
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